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ABSTRACT Graph Database Encryption Scheme Efficient Graph Encryption Construction

We propose graph encryption schemes that efticiently support A sranh . heme for dist s Granh = We propose three constructions. Our first scheme only makes
approximate shortest distance queries on large-scale encrypted grapi encryption scheme tor distance queries tsraph = use of symmetric-key operations and, as such, is very

graphs. Shortest distance queries are one of the most fundamental (Seczltup ’ II)IStQu.e rly ) consists of a p olynomlla%l- time alligorlthm computationally efficient. Our second scheme makes use of
- : - : S : and a polynomial-time two-party protocol that work as . .
graph operations and have a wide range of applications. Using such poly pdrty p somewhat-homomorphic encryption (BGN cryptosystem) and

- : - : follows: . . . . .
graph encryption schemes, a client can outsource large-scale e (K EGR S 1k G achieves optimal communication complexity. Our third scheme
privacy-sensitive graphs to an untrusted server without losing the (K, ) = Setup(1%. G, a.€) is computationally-ecient, achieves optimal communication

ablhty to query it.  Other applications include encrypted graph (da J—) < diStQueryC,S((K7Q)7 EGR) Complexity and produces compact encrypted graphs at the cost
databases and controlled disclosure systems. We propose GRECS We say that Graph is (a, €)-correct if for all k € N, for all of some leakage. We show that all our constructions are
(Stands for GRaph EnCryption for apprOXimate Shortest distance G, th}" all o0 > l,tf()}" all € < 1, Cl}/ldtf()r all q — (H?V) ~ Vz, adaptively Semanticaﬂy_secure with reasonable leakage
queries) which includes three schemes that are provably secure | functions.
against any semi-honest server. Our first construction makes use of Prid < o-dist(u,v)| > 1 —e,
iC- ' ' ' U _ 0 h(w, 2 h(w; h t-1
only .SYHIIIII]E’[I‘flf(; l.<ey P era.tlons, resul(timgh tn . d where the probability is over the randomness in comput- ” (wi& = (};’3_% = (jff?_ﬁk
computationally-efficient constructl(?n. Our second scheme, makes ing (K,EGR) < Setup(1¥,G.a. &) and then (d, L) « . | Enc,, (0) |Eney (2" Enc,, (0)| -- e, (2 [Enc, (%) Enc , (0)
use of somewhat-homomorphic encryption and 1is less distQ ( (K.q),EG R) o o ,
| . . . . L ISTUEry\\A, ¢4), : GraphEnc2: Communication-Efficient Construction

computationally-efficient but achieves optimal communication
CO.IIl;)IEXIty (1..e., uses a IIllIllIIlf’:ll amount .of bandwuflth).. Fmally,. our . Theorenm Let G= (V.E). a> 1 ande < 1. For all ¢ = (w.v) € V7
third sch.erne: is both ComPutatlonally—efflment and achieves optimal Graph Database Security with uw £ v,
communication complexity at the cost of a small amount of : — : Pr|d < o-dist(u,v)] > 1— ¢,
additional leakage. We implemented and evaluated the efficiency of Secu;‘fl.ty. Definition (at a hllgh level): o | where (d,1) = GraphEncy.distQuery((K.q),EGR) and (K,EGR) «
our constructions experimentally. The experiments demonstrate that No efficient adversary can learn any partial intormation about GraphEncy.Setup(1F, G, v, 2).
our schemes are efficient and can be applied to graphs that scale up the graph or the QUETIES, be;yond what is exphc1tly. allowed by
to $1.6$ million nodes and $11$ million edges. the leakage functions. This holds even for queries that are Arr

adversarially-influenced and generated adaptively; that is, as a ind3 | ﬁ <(H(CYISWHE.Enc(2V #))INULL @ H(K,/Ir), rﬁ}

function of the encrypted graph and previous results. '
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However, how to compute shortest distance?? Sketch-based oracle! . e L
s . . §U AT T N PP b
Dijkstra, Bellman-Ford, Adj-Matrix? NO! Sketched-based oracles More formally, a sketch-based distance oracle P
DO = (Setup, Query) is a pair of efficient algorithms that work as follows.
Setup takes as input a graph G, an approximation factor o and an error ”
bound ¢ and outputs an oracle Qg = {Sky}vev. Query takes as input an (a) Query Time (in ms) using DO, (b) Query Time (in ms) DO,
oracle g and a shortest distance query ¢ = (u,v). We say that DO is 3| | e ) ] | i
ok(vi): 1(a,3), (0,3), (€,6), (9,3), (B, 1)} (v, €)-correct if for all graphs G and all queries g = (u, v)
Sk(v;): {(b,2), (d,1), (e,3), (R,3), (f,7)} R J P e Sy R
2l = H"“*Hﬁ-ﬁ%
Pr{d < «-dist(u,v)] > 1 — ¢, : H | L
Figure 1: Two example sketches for nodes v; and v;. The approximate T i : ;. ; ' a ) s :
shortest distance d = 5, since b is in both sketches and the sum of its _ _ _ |
distances to v; and v; is the minimum sum. where d := Query(ﬂ(;} U, *U)_ Mean of Estimated Error with Mean of Estimated Error with

Standard Deviation using DO Standard Deviation using DO»
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